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LETTER TO THE EDITOR 

Lie symmetry, rational solution and bilinear operator 
structure for one- and two-dimensional nonlinear equations 

Rebecca Mukherjee, A Roy Chowdhury and K Roy Chowdhury 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta, 
700 032, India 

Received 23 March 1983 

Abstract. We have systematised and extended the technique of Sym for obtaining the 
rational solutions of nonlinear equations in one and two space dimensions through the 
use of Lie symmetry and Hirota's bilinear operator. Our method is easily extensible for 
higher-dimensional integrable equations. 

Recently Sym (1978) has demonstrated that it is possible to obtain a class of exact 
solutions of nonlinear evolution equations in one dimension through the use of Hirota's 
bilinear operator and assuming a solution of the form 

(1) 

where f is connected to the nonlinear field U through U = (logf),, and a nonlinear 
equation ut = k(u) can be converted to the form 

k 1  f = t b x C  p = t x ,  

G(D,,Dr)*f.f=O (2) 

G(D,, D,) = a,,,.Dr"D: (3) 

where G, being a polynomial in D,, Dr, is written as 

and D,, D, are Hirota's bilinear operator. Since each term in (2) will contain different 
powers in x and t the main problem is a suitable choice of the constants (k, 1, 6, c )  
so that it can be written again as a series in p and, equating like powers of p, we get 
a recursion relation for the coefficients 6,. The mechanism for effecting this'choice 
as suggested in Sym's paper is quite roundabout and is really difficult to implement. 
Here we propose that the most important choice of (k, I)  comes automatically if we 
invoke Lie symmetry of the equation which yields the similarity variable x s / t "  and 
we can set p = x ' t -"  so that k = 8, I = -v. We show below that this proposal works 
neatly in the cases of the higher-order K d v  equation, Boussinesq equation and Sawada- 
Kotera equation. 

( i )  Boussinesq equation (Ito 1982) 

The bilinear form is 

(Dl+3DP)f*f=O 
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(4) 
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and the scaling law predicts 
F = x z t - 1  

so we set 
2 -1 n f = C n n ( X  t ) , 

( i i )  Sawada-Kotera equation (Sato 1 9 8 1 )  

The bilinear form is 

and the Lie analysis yields 
p = x 5 t - '  

f = E  6 , (x5 tC ' )"  

so we set 

(iii) Higher-order It0 equation (Sato 1981 ) 

The bilinear version is 

Lie symmetry yields the scaling variable 

(9) = Y 3 t  
so we put 

f =  cZ"(x-3t)". 
Equation (2) reads as follows in each case which immediately yields the recursion 

(i) k = - l , Z = 2  

relations (ct(fs, Is') are defined in Sym (1978)): 

+ 3  1 ~x2 t -1~s+s '+1co( I s ,  Z S ' ) C Z ( k S ,  ks') = 0 
s,s' 1 

(ii) k = - 1, f = 5 

+ c (X5t-1)s+"Co(ks, ks')cg(ls, Is') = 0 
s,s' I 

(iii) k = 1, 1 = -3 

( x - 3 t - l ) [  1 a,a,,(x -3  t)"'"'Cl(Sk, sk')c3(sl, s ' f )  
s.s' 

+ c (X-3t)S+s'-1C2(Sk, s'k)co(sf,  s'l)a,u,, = 0. 
s,s' 1 
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Since in our methodology we need not search for (k, I) in an arbitrary manner, we 
can extend the method easily to the many-dimensional case. Below we set out to 
elaborate the rule for the higher-dimensional cases. 

Suppose the equation under consideration reads 

ur = k ( u ,  U,, U,, uZ, . . .). (11) 

H ( D x , D r , D y . . - , ) f * f = O  (12) 

Under the dependent variable transformation U = (logf),, let this be written in the form 

where 

H = 1 blmn. . . DiD,"D:. . , 
Now let us use appropriate similarity variables ~ ( x ,  t ) ,  ~ ( x ,  y ) ~  ( y ,  z )  . . . whose struc- 
tures may be explicitly known from Lie-Backlund analysis. We then set 

f = C A i j k . .  . F i ( X , f ) ( T i ( X , y ) E k ( y , Z )  (13) 
and proceed a la Sym, so that the recurrence for the coefficients Aijk can be obtained 
and solved. Below we give an example of the two space dimensions with the help of 
the Kadomtsev-Petviashvili equation (Date et a1 1981). The equation is 

~ , ( ~ , + 6 u u , + u , , , ) + ~ ~ , ,  = O  (14) 

(D: + DxDr + D; )f f = 0. (15) 

Now, it is known from the Lie-Backlund type (Tajiro et a1 1982) analysis that this 
equation admits two scaling variables, 

F ( Y ,  t )  = Y t - 2 / 3 ,  ( T ( x ,  t )  = X t P 3 ,  (16) 

f = C f n m p  ( Y ,  t )"v(X, t)". 

and can be written in Hirota's variables as 

so we get 

(17) 

Then after the indicated operations of the D operators have been carried out we have 
1 fijfi,j,[c4( j ,  , j ' ) (y t -2 '3 ) i '+ i  (x t - ' / 3 ) j '+ j -3  

+ l(j, ' ( i  + j ,  i t  + j ' ) ( y t - 2 / 3 ) " + ' ( X t - ' / 3 ) ~ ' + i  

(18) 
+ c2( i ,  i t ) ( y t  -2/3)i'+i-2(Xt-1/3 j + j ' + l  ) ] = O .  

This yields a recurrence for the coefficients a,,". We obtain by equating coefficients 
of ( y t - 2 / 3 ) n  ( X t - 1 / 3 ) m  

f = ( x 2  + A  ' t 2  + y 2  + 2 A x t  + y t  + x y )  (19) 
if we cut off the series (18) after the first two terms. 

Two points may be mentioned at this point. Firstly the result (19) was obtained 
by Ablowitz and Satsuma (1978) by a limiting procedure from the general solution. 
Also, in the multidimensional case our solution (17) to some extent resembles the 
multiphase solution suggested recently by Flaschka and Newel1 (1981). From the 
analysis presented here it seems very encouraging to build up new types of solutions 
of further nonlinear equations because nowhere do we require the Lax pair for the 
inverse scattering transform. 
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